Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.

Identifieur interne : 000023 ( Main/Exploration ); précédent : 000022; suivant : 000024

Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.

Auteurs : Sakihito Kitajima [Japon] ; Kenji Miura [Japon] ; Junko Yasuda [Japon]

Source :

RBID : pubmed:32362753

Abstract

Agroinfiltration, the infiltration of plants with Agrobacterium harboring a plasmid that contains a specific gene, is used to transiently express a gene in a heterologous organism. Using the "Tsukuba system", greater amounts of target protein accumulate compared with usual expression plasmids. Reported host plants, including Nicotiana benthamiana, a common plant for agroinfiltration, need several weeks after sowing to grow enough for infection. To shorten the culture period and, thereby, improve target protein production, we tested sprouts as host plants. Sprouts were grown in the dark to encourage elongation so that vacuum infiltration becomes easier, and this was followed by a few days of exposure to illumination before infection with pBYR2HS-EGFP, the EGFP expression plasmid of the Tsukuba system. Among six tested species of Fabaceae and Brassicaceae, radish showed the highest transient expression. Among six tested radish cultivars, Kaiware, Hakata, and Banryoku provided the best results. Culturing for 5 day, including 1 day of imbibition and 1 to 2 day of exposure to illumination resulted in EGFP fluorescence in 80% of the cotyledon area. Thus, a remarkable amount of EGFP was obtained only 8 day after seed imbibition. The EGFP amount in Kaiware cotyledons was comparable with Rubisco at ∼0.7 mg/g fresh weight. Kaiware sold in supermarkets could also be used, but resulted in lower expression levels.

DOI: 10.5511/plantbiotechnology.19.1216a
PubMed: 32362753
PubMed Central: PMC7193837


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.</title>
<author>
<name sortKey="Kitajima, Sakihito" sort="Kitajima, Sakihito" uniqKey="Kitajima S" first="Sakihito" last="Kitajima">Sakihito Kitajima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miura, Kenji" sort="Miura, Kenji" uniqKey="Miura K" first="Kenji" last="Miura">Kenji Miura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8572</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8572</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yasuda, Junko" sort="Yasuda, Junko" uniqKey="Yasuda J" first="Junko" last="Yasuda">Junko Yasuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32362753</idno>
<idno type="pmid">32362753</idno>
<idno type="doi">10.5511/plantbiotechnology.19.1216a</idno>
<idno type="pmc">PMC7193837</idno>
<idno type="wicri:Area/Main/Corpus">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000042</idno>
<idno type="wicri:Area/Main/Curation">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000042</idno>
<idno type="wicri:Area/Main/Exploration">000042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.</title>
<author>
<name sortKey="Kitajima, Sakihito" sort="Kitajima, Sakihito" uniqKey="Kitajima S" first="Sakihito" last="Kitajima">Sakihito Kitajima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miura, Kenji" sort="Miura, Kenji" uniqKey="Miura K" first="Kenji" last="Miura">Kenji Miura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8572</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8572</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yasuda, Junko" sort="Yasuda, Junko" uniqKey="Yasuda J" first="Junko" last="Yasuda">Junko Yasuda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585</wicri:regionArea>
<wicri:noRegion>Kyoto 606-8585</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biotechnology (Tokyo, Japan)</title>
<idno type="ISSN">1342-4580</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Agroinfiltration, the infiltration of plants with
<i>Agrobacterium</i>
harboring a plasmid that contains a specific gene, is used to transiently express a gene in a heterologous organism. Using the "Tsukuba system", greater amounts of target protein accumulate compared with usual expression plasmids. Reported host plants, including
<i>Nicotiana benthamiana</i>
, a common plant for agroinfiltration, need several weeks after sowing to grow enough for infection. To shorten the culture period and, thereby, improve target protein production, we tested sprouts as host plants. Sprouts were grown in the dark to encourage elongation so that vacuum infiltration becomes easier, and this was followed by a few days of exposure to illumination before infection with pBYR2HS-EGFP, the EGFP expression plasmid of the Tsukuba system. Among six tested species of
<i>Fabaceae</i>
and
<i>Brassicaceae</i>
, radish showed the highest transient expression. Among six tested radish cultivars, Kaiware, Hakata, and Banryoku provided the best results. Culturing for 5 day, including 1 day of imbibition and 1 to 2 day of exposure to illumination resulted in EGFP fluorescence in 80% of the cotyledon area. Thus, a remarkable amount of EGFP was obtained only 8 day after seed imbibition. The EGFP amount in Kaiware cotyledons was comparable with Rubisco at ∼0.7 mg/g fresh weight. Kaiware sold in supermarkets could also be used, but resulted in lower expression levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32362753</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1342-4580</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>37</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Plant biotechnology (Tokyo, Japan)</Title>
<ISOAbbreviation>Plant Biotechnol (Tokyo)</ISOAbbreviation>
</Journal>
<ArticleTitle>Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.</ArticleTitle>
<Pagination>
<MedlinePgn>89-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.5511/plantbiotechnology.19.1216a</ELocationID>
<Abstract>
<AbstractText>Agroinfiltration, the infiltration of plants with
<i>Agrobacterium</i>
harboring a plasmid that contains a specific gene, is used to transiently express a gene in a heterologous organism. Using the "Tsukuba system", greater amounts of target protein accumulate compared with usual expression plasmids. Reported host plants, including
<i>Nicotiana benthamiana</i>
, a common plant for agroinfiltration, need several weeks after sowing to grow enough for infection. To shorten the culture period and, thereby, improve target protein production, we tested sprouts as host plants. Sprouts were grown in the dark to encourage elongation so that vacuum infiltration becomes easier, and this was followed by a few days of exposure to illumination before infection with pBYR2HS-EGFP, the EGFP expression plasmid of the Tsukuba system. Among six tested species of
<i>Fabaceae</i>
and
<i>Brassicaceae</i>
, radish showed the highest transient expression. Among six tested radish cultivars, Kaiware, Hakata, and Banryoku provided the best results. Culturing for 5 day, including 1 day of imbibition and 1 to 2 day of exposure to illumination resulted in EGFP fluorescence in 80% of the cotyledon area. Thus, a remarkable amount of EGFP was obtained only 8 day after seed imbibition. The EGFP amount in Kaiware cotyledons was comparable with Rubisco at ∼0.7 mg/g fresh weight. Kaiware sold in supermarkets could also be used, but resulted in lower expression levels.</AbstractText>
<CopyrightInformation>© 2020 The Japanese Society for Plant Cell and Molecular Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kitajima</LastName>
<ForeName>Sakihito</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miura</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yasuda</LastName>
<ForeName>Junko</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Biotechnol (Tokyo)</MedlineTA>
<NlmUniqueID>101233156</NlmUniqueID>
<ISSNLinking>1342-4580</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Raphanus sativus</Keyword>
<Keyword MajorTopicYN="N">agroinfiltration</Keyword>
<Keyword MajorTopicYN="N">seedling</Keyword>
<Keyword MajorTopicYN="N">vacuum infiltration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32362753</ArticleId>
<ArticleId IdType="doi">10.5511/plantbiotechnology.19.1216a</ArticleId>
<ArticleId IdType="pmc">PMC7193837</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Mar 19;8(1):4755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29555968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2019 Jan;38(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30328507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2011 Apr 12;29(17):3230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol (Tokyo). 2019;36(2):119-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31768113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Res. 2018 Feb 7;2018:3710961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29577048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Jan;220(2):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2325623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Kitajima, Sakihito" sort="Kitajima, Sakihito" uniqKey="Kitajima S" first="Sakihito" last="Kitajima">Sakihito Kitajima</name>
</noRegion>
<name sortKey="Kitajima, Sakihito" sort="Kitajima, Sakihito" uniqKey="Kitajima S" first="Sakihito" last="Kitajima">Sakihito Kitajima</name>
<name sortKey="Miura, Kenji" sort="Miura, Kenji" uniqKey="Miura K" first="Kenji" last="Miura">Kenji Miura</name>
<name sortKey="Miura, Kenji" sort="Miura, Kenji" uniqKey="Miura K" first="Kenji" last="Miura">Kenji Miura</name>
<name sortKey="Yasuda, Junko" sort="Yasuda, Junko" uniqKey="Yasuda J" first="Junko" last="Yasuda">Junko Yasuda</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000023 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000023 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32362753
   |texte=   Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene expression system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32362753" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024